494

MONTHLY WEATHER REVIEW

Vol. 99, No. 6

UDC 561.511.6:651.673

A NUMERICAL SOLUTION OF THE TWO DIMENSIONAL
STEADY-STATE TURBULENT TRANSFER EQUATION

GOUR-TSYH YEH and WILFRIED BRUTSAERT
School of Civil Engineering, Comell University, lthaca, N.Y,

ABSTRACT

- In the finite-difference formulation of the two dimensional steady-state turbulent diffusion equation for solving
evaporation problems, two difficulties arise caused by the automatic satisfaction of one of the boundary conditions
at the surface and by the infinite size of the solution domain. A general numerical scheme is developed to overcome
these difficulties by the use of appropriate transformations. The results of some numerical experiments show that the
the longitudinal diffusion term is usually negligible and that, with suitable parameters for roughness and stability,
power laws can be as useful for practical solutions as the more complicated logarithmic law.

1. INTRODUCTION

Evaporation as a phenomenon of steady turbulent
diffusion of water vapor in air flowing over a free water
surface can be described (e.g., Sutton 1934) by

Oq 0 d
~ Oz ”62:>+6y (K’"’ )+Bz (K"az (1)

under appropriate boundary conditions. In this equation,
% is the mean velocity of the wind in the z direction, ¢ is the
specific humidity of the air, and K,,, K,,, and K,, are the
longitudinal, lateral, and vertical components of the eddy
diffusivity. Due mainly to the mathematical complexity
of the available functions describing the wind speed and
the diffusivities in which the exact physical nature is far
from understood, the complete exact solution of eq (1)
for evaporation still seems an almost hopeless task. Pos-
sible ways of obtaining approximate solutions are either
to aim at analytical solutions after omitting terms from
eq (1) that appear negligible and after making simplifying
assumptions concerning the wind speed and the dif-
fustvity or alternatively to replace eq (1) by its finite-
difference form and to solve the resulting algebraic equa-
tions. The former type of solutions has the advantage of
providing perhaps more direct insight into the nature of
the problem and to be more practical to apply, whereas the
latter allows the study of rather complicated physical
situations and also the assessment of the errors intro-
duced by various simplifications. Common simplifying
assumptions that have been employed in the past to solve
evaporation problems are that (1) the wind profile and the
diffusivities can be represented by power functions of
elevation 2, (2) the longitudinal diffusion term is negli-
gible, and (3) the lateral diffusion term is negligible.

It has been shown recently (Brutsaert and Yeh 1969)
that, for evaporation from extremely small water surfaces
under neutral conditions, lateral diffusion probably con-
tributes less than 13 percent of the average evaporation.
Hence, for evaporating surfaces that are several orders of
magnitude larger than, say, 1 cm? assumption (3) appears
indeed reasonable. However, as far as the authors know,

to date no analysis has been performed on the sensitivity
of solutions of eq (1) to the use of assumptions (1) and (2).

The main purpose of this paper is to present a numerical
scheme of solution of

gg ai (K" 6x)+62 (K 32/

The method of solution should be sufficiently general to
allow the use of any mathematical form for the wind
profile or for the diffusivity as functions of the turbulence
structure in the lower atmosphere. As a first result,
numerical experiments will then permit the evaluation of
the validity of the assumptions mentioned above.

2. PHYSICAL MODEL

The following situation is considered: (1) at the water
surface the specific humidity ¢==¢, is saturated and con-
stant; (2) far away from the water surface (i.e., as z—
+®), the specific humidity profile g,(z) is known; (3)
at the ground surface of the land adjoining the water
body, the vapor flux W,, is constant and known, This
gives the following boundary conditions:

(1*)

g=q., atz=0, — zpLl2 <y, (2
g=gq3 atz—oo, —ololw, (3)
q=4.(2) 8t z2>0, |z|—w, (4)
and
b e p K s P Wy i 2=0, Ja>m0, ()

in which p, is the density of the air; K.,, is the vertical
diffusivity in the air if the water surface were not present;
2z, is the size of the water surface; ¢% is the value of
g, at 2= ; ¢4, a function of z only, satisfies

0q,

=6%(K"“ 9z) az(K“ %q;) ©)

where r=K,,/K,., will be assumed a constant.
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When gq is solved from eq (1*), the water vapor flux at
the water surface is given by

dq

Wz=_'PaKzz a-_Z' z==0; (7)
and the average evaporation is given by
E= f * W, du/(2as). )
-0

The wind speed is assumed to be a function 6f z only.
Two ‘different laws for the wind profile are of concern
here (viz, the power law and the logarithmic law):

U=A2" =AUy 2™ (9a)

and

u="* In[(z+20)/20] (9b)

where u, is the friction velocity, « is von Kdrmén's
constant, and z, is the roughness of the surface. The
former was used to study the effect of forward diffusion,
and the latter was used to investigate the validity of the
assumption of the power law. With « given, K,, can be
derived by Reynolds analogy to give from eq (9a)

K..=u,z"""/(ma,) (10a)

or from eq (9b)

Kzz="u*(z+20)~ (10b)

There is no similar analogy theory to assure a mathe-
matical derivation of K, since the momentum transfer in
the present case is one-dimensional. Nevertheless, it will
be assumed (Brutsaert 1967) that

K,,=dK,, (11)

where d denotes the anisotropy between K., and K,,.

3. SOLUTION WITH THE POWER LAW

In the straightforward finite-difference representation of
eq (1*) with eq (9a) and (10a) subject to boundary conditions
(2) through (5), two difficulties arise immediately. First,
boundary condition (5) is satisfied automatically when it
is evaluated numerically at z=0. Second, the numerical
domain has to cover the whole upper half plane since
boundary conditions (3) and (4) are at infinity.

To overcome the first difficulty, one conveniently intro-
duces the following dimensionless variables and trans-
formations:

E=e/ze X=(9—¢a)/(qv—q2)
and (12)
— (mxo) -m/(1 +2m)a(2)m/ (1+2m) m

- where ¢, is the value of g, at z=0. The purpose of the
power m for z is to reduce 2'™dx/dz to.dx/d¢, so that eq

423-910 0—71——4
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(5) is no longer automatically satisfied. To overcome the
second difficulty, one transforms the upper half ¢—¢
plane into a strip in the ¢—y plane by means of the
following transformation as suggested by Davies (1947)
for a different problem:

¢=—cosh ¢ cos ¢

and (13)

¢t=sinh ¢ sin ¢.

It can be seen that this transformation brings the upper
half plane (i.e., the physical plane of the present problem
reaching theoretically all the way to infinity) into a strip
of height =, so that the working domain is easier to treat
numerically. Thus, a square grid in the strip represents
an outwardly increasing grid size in the physical plane;
and most of the detail is obtained near the evaporating
surface where it is of interest.

With transformations (12) and (13), eq (1*) through
(8) become

ax ax

0%

3699 =0 (14)

_ . 0%
Lx)=4 W+2B

where

A=¢(sinh ¢ sin )?4~™/m sinh? ¢ cos® y+-cosh? ¢ sin? ¢,
B=sinh ¢ cosh ¢ sin y cos ¢{1—e(sinh ¢ sin y)21=m/m}

C =¢(sinh ¢ sin ¥)*!~™/m cosh? ¢ sin? Y-+-sinh? ¢ cos? ¢,

sinh ¢ cosh ¢(2 cos?y sin? Y+ cosh? ¢ sin?y—sinh? ¢ cos?y)

D= sin? ¢4-sin? ¢
X { e(sinh ¢ sin )21~ /m—1}
—(sinh ¢ sin ¢)'/™ sinh ¢ cos y¥(sinh? $+sin® ),
Fe sin ¢ cos (2 sinh? ¢ cosh? ¢ +sinh?¢ cos®y—cosh? ¢ sin®y)

sinh? ¢+sin®
X {e(sinh ¢ sin )21 m—1}
<4 (sinh ¢ sin ¢)!™ cosh ¢ sin ¢ (sinh? ¢4-sin? ),

e=(mmalay) ~4/+m

Wt W (mx:au*(Qw—Q?z) 9x| (15)
E=rE, s o (mmp)%’:fg;m)a?pwzm J; G_X ¢=0d‘ﬁ’ (16)
x=1 at ¢==0, 17)
x=0 at p=— o, (18)
and

gi_o aty=0  ory=m. (19)

The derivatives in eq (14) can be approximated by
ratios of differences, and these differences areexpressible
in terms of functional values. For a square net with
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spacing A, it can be shown (Forsythe and Wasow 1960)
that the differential operator L can be approximated by
the finite-difference operator Ly to the order of A%:

0= { (4+22)x @ +(4="2)xcw)
+(0-—7 x(S)+(0+’§)x(N)+§{x(SW)—x(SE)

+x(NE)—x(NW)]—(244-20)x(P) } =0 (20)

where P denotes the coordinates of the grid point under
consideration and N, E, S, W, NE, SE, SW, and NW denote
north, east, etc., respectively. Since as a result of trans-
formation (13) the semi-infinite strip has a width = that
is an irrational number, it is difficult to choose a grid
spacing A to make the whole domain a square net. There-
fore, as shown in figure 1, a square net is used throughout
the domain except near the upper boundary, =, where
a partly square net is used. For such a grid (viz, for which
NW—-N=N—-NE=W—-P=P—-E=SW-S8S=S-—
SE=P—-S=E—SE=h and NW—W=N—-P=NE—-E=
k'), the following approximation (Yeh 1969) may be used:

Lm.,<x>—h2{(A+"D)x<E>+(A——— X (W)

2Ch? W F 2hC W' F
+[h'(h+h'> (h+h'>} N+ gy GFi

hB
(h ) [xSW)—x(NW)+x(NE)—x(SE)]

[2A+2h0 (h h)hF] (P)}

The boundary condition (19) can be approximated by
the finite differences

x(P)—x(S) =
x(P)—x(N)=0

Boundary condition (18) should be taken theoretically at
¢=c and requires, therefore, an approximation for the
numerical scheme. For the present problem, it was
decided to assume that the strip shown in figure 1 extends
only up to ¢=3. For most problems in the lower atmos-
phere, this would seem quite satisfactory, since it cor-
responds in the original physical plane to an elevation
or distance about 20 times the size of the evaporating
surface.

Apply eq (20) and/or (21) to each interior point of the
working domain and eq (17), (18), (22), and (23) to the
boundaries of the strip shown in figure 1; a system of
linear algebraic equations determining the functional
values of the interior points is obtained:

] X(S)

(21)

at ¢=0 (22)
and

at yYy=m. (23)

AX=V (24)

where V is a constant vector in which the components
are determined by eq (17) and (18); X is the unknown
vector having the functional values of the interior points
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Figure 1.—Solution domain for eq (14) represented by a square
grid (eq 20) everywhere except near == where a partly square
grid (eq 21) is used.

B

as its components; A is the matrix whose elements are
obtained from the finite-difference operators L, and Ly,
and the boundary conditions (22) and (23).

An elimination method was used to solve the system
of eq (24). Due to limitations of computer storage, the
grid size could not be selected as small as would be
desirable to reduce the discretization errors. Therefore,
for this purpose, the elimination procedure was applied
in conjunction with a successively refined grid size. In
other words, initially, a large grid is taken for the whole
domain extending to ¢=3. This first solution then provides
the boundary condition for a much smaller domain ex-
tending only between ¢=0 and a fraction of ¢=3 and
with a correspondingly smaller grid size. This new solution
obtained with the refined grid is then used again as a
boundary condition for the next step, and so on if neces-
sary. Accordingly, the calculations were first carried out
with a grid size £=0.15 that was eventually refined to
0.075,

The system of eq (24) involves three parameters, m, a,,
and d, which must be known to obtain physically realistic
results with the numerical calculations. Very little is known
about the parameter d. Yamamoto and Shimanuki (1964)
have analyzed experimental data from projects Prairie
Grass and Green Glow and found that under neutral
conditions the ratio K,,/K,. has a value of about 13. From
their study, no simple conclusions can be drawn about the
dependence of this ratio on the stability of the air. Never-
theless, the range of K,,/K,, seemed to lie roughly between
1 and 100. Although it is known that K, is usually some-
what larger than K, for the present study in which it is
merely intended to evaluate the sensitivity of the solu-
tion, this parameter d=K,,/K,, is also assumed to lie in
this range. The parameter m is known to have a value of
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Froure 2.—Wind profiles as given by u/(2.5u,) versus elevation 2

for the power law and the logarithmic law.

TABLE 1.—Results of numerical solution of eg 1% for diﬁ'ergntm
and zs with ap=9, d=10 given as (E—rE)/{pux(gu—aq3)}

220 104 102 100 102 10 100
m
18 0. 65924 0.2933 0. 1686 0. 0956 0.0538 0.0303
hiig 4632 . 2672 . 1598 . 0966 . 0580 . 0348
1/8 . 3851 . 2326 1531 . 0976 . 0616 . 0389

TaBLE 2.—Results of numerical solution of eg (1*) for different ao
and zo with m=1{7, d=10 gwen as (E—rE,)]/{paux(qu—a5)}

2z 104 102 100 102 104 108
Qo
7 0. 5906 0. 3175 0.1913 0.1174 0. 0706 0. 0423
11 . 3829 . 2212 . 1375 . 0827 . 0496 . 0297

TaBLE 3.—Resulis of numerical solution of eq sl*) for different

d and zq with ay=9, m=1/7 given as (E—rE,)/

pattx(qw—qd) }

|
229 104 102 100 102 104 108
d
1 0.4292 0.2674 0. 1612 0. 0967 0. 0580 0. 0349
100 . 5362 . 2819 - 1546 . 0954 . 0579 . 0348

1/7 under neutral conditions and to decrease with de-
creasing stability. Although this is an admittedly rough
approximation, small deviations from neutral stability can
thus be represented by values of m that deviate slightly
from 1/7. The parameter a, depends mostly on the rough-
ness of the surface and also other factors such as the
stability of the air. For neutral conditions, it can be ob-
tained by matching the power profile with the logarithmic
profile. Of course, as illustrated in figure 2, the problem is
where to match the two curves. This matter will be further
discussed below.

1.00
0o
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>
3
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~
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|
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0.01— ) 5 5 < o
10 10 10 10 10 10
2x4 [cm)

Figure 3.—Reduced evaporation rate versus size of the evapor-
ating surface as obtained by numerical solution of eq (1*, solid
line), eq (25, dashed line), and eq (26, dash-dot line) for m=1/7,
a,=T7 and 9, and d=10.
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Ficure 4.—Same as figure 3, but for m=1/7, ay=9, and d=100.

The calculations were carried out for combinations of
three different values of each parameter m, a,, and d. The
results are given in tables 1, 2, and 3 and in figures 3 and 4.
To determine the effect of the longitudinal diffusion term,
one must compare the solution of eq (24) with the solution
of the equation in which this term is neglected. Fortu-
nately, however, for this case [viz, for eq (1*) but without
the first term on the right-hand side], an analytical solu-
tion is available, which was first obtained by Sutton (1934)
using a different physical model for % and K,.. Adaptation
of that solution to the present physical model and trans-
formation into a simpler form (cf. Frost 1946, p. 24) gives

(25)

E—rEy=patis(qu—go)/{T (¥ "> (1—v)m'ziay >}

where v=m/(1+2m). The results of calculations performed
for some of the same values of the parameters used in the
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solution of eq (1*) are shown in figures 3 and 4. Compari-
son of these two sets of results shows the rather puzzling
fact that the inclusion of the longitudinal diffusion term
seems to decrease the evaporation. The negative effect of
longitudinal diffusion is also confirmed by a perturbation
solution of eq (1*) that will appear in a later communica-
tion. This puzzling result may perhaps be explained by the
fact that, while forward diffusion provides one mechanism
for mass transfer, it may also damp the mass transfer by
advection. At any rate, the net effect of forward diffusion
is very small; and as seen from this numerical solution
(figs. 3 and 4), it can be neglected.

Actually, for large evaporating surfaces, this result is to .

be expected from dimensional reasoning. However, dimen-
sional reasoning only gives a qualitative idea and does not
permit the exact determination of the lower limit on the
size of a “large” area without the experiments or calcula-
tions of the present type. Similarly, for extremely small
surfaces, the same dimensional reasoning (Brutsaert 1967)
leads to the conclusion that, in eq (1*), the advection term
is negligible as compared to the longitudinal eddy diffusion
term. The solution of this case under the present boundary
conditions and for the present physical model (Brutsaert
and Yeh 1969) gives

E—rE,= ptix(¢—03)2md™ T (1—m/2)

< {m(1—m)TY(1—m)/2]T (m/2)a,}. (26)
To determine what exactly should be meant by an “ex-
tremely small” surface, the results obtained with this
equation are compared in figures 3 and 4 with the numer-
ical results obtained from the complete eq (1*). This
shows that the two solutions tend to come together for
decreasing x,. However, as such, the extremely small
surface is probably never encountered in nature. Never-
theless, this case is of theoretical interest since it shows
the general tendency of the parameters for decreasing
evaporating surface areas; and it allowed the evaluation
of the effect of lateral eddy diffusion under extreme
conditions.

To check the validity of the comparisons shown in
figures 3 and 4, it was necessary to determine the accuracy
of the numerical scheme for solving eq (1¥). This was
done by omitting the longitudinal diffusion term [i.e., by
putting ¢ in eq (14) equal to zero]. The results of calcula-
tions are listed in table 4, and comparison with the
analytical solution (eq 25) shows that the total error in the
numerical scheme is probably smaller than 1 percent.

TABLE 4.—Comparison belween numerical solution of eq (1*) without
the z diffusion term and the analytical solution (26) with m=1/7,
ao=9, d=10 given as (E—rE)/{psus(qu—e2)}

224 10+ 10-2 100 102 104 108
Numerical solutlon. ...._ 0. 4537 0.2720 0. 1631 0. 0978 0. 0586 0. 0351
Analytical solution._..... . 4560 . 2733 . 1639 . 0082 . 0589 . 0353
Error in percent...__..__. -.506 | --.478 | —.336 | —.407 | —.510 —. 666
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4. SOLUTION WITH THE LOGARITHMIC LAW

After having shown that forward diffusion is negligible,
it is the purpose of this section to test the validity of the
power law for the wind profile in the prediction of evapo-
ration from large water surfaces. Equation (1¥), neglecting
the longitudinal term, must be solved with u(z) and K,
given by eq (9b) and (10b); the results must be compared
with the analytical solution (25) or with the numerical
solution for m=1/7 with ¢=0.

For comparison with the earlier numerical results
obtained through transformation (12) with m=1/7, the
following transformation is introduced:

f=a/10;  x=(0—2)/(qu—90);
£ = (20/ 7)) /* In[(24-2,)/20].

(27)

From here on, following the same procedures and
transformations as those used in the numerical solution
with the power law for e=0, we obtained the numerical
results given in table 5. In figure 5, these data are com-
pared with those obtained by means of eq (25) based on
the power law. The results show that, for most values
of z, of interest, the logarithmic law gives evaporation
values that are approximately equal to those given by
the power law, provided that z, and a, are chosen such
that the two wind profiles are matched as shown in
figure 2.

The relationship between a, and z, is now analyzed.
Table 6 shows the variation of evaporation with a, for
m=1/7. Table 7 gives the dependence of evaporation on
2o for a certain lake size, 2z,=10* cm. The former is
obtainable with the power law for the wind profile either
by the numerical method for ¢e=0 or by the analytical
solution (eq 25). The latter is obtained with the logarith-
mic law by the numerical method. From these results
that are plotted in figure 6, figure 7 is plotted showing
@y versus 2, for constant values of evaporation. This
shows that, under neutral conditions, the power law for
the wind profile is valid in the prediction of evaporation
from lakes provided that a, is chosen from figure 7 for a
given z,. Looking back to figure 2, one sees that, with a
pair of a, and z, from figure 7, the two profiles match
between 1 cm and 5 m. Furthermore, it is seen that, for
larger z,, the intersection point of the two profiles is at
a higher elevation. From figure 7, an empirical formula

TaBLE 5.—Results of numerical solution of eq (I*) neglecting z
diffusion with the logarithmic law for different values of zp and zo
given as (E—rE.)/|pous(gw—q3) }

2z 102 100 102 104 108 108
20
0.01 0.3212 0. 1476 0. 0863 0.0518 0. 0309 0.0192
20 . 6415 . 2341 L1211 . 0722 . 0433 . 0252
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can be derived relating a, with z, in the range of interest,
namely

@y=>5.5 251", (28)
suggested by the fact that @, has dimension (L7'7).
Equation (28) is valid only for neutral conditions. Thus,
for the general case, a relationship between a, and z
might be postulated of the type

ag=Cz™ (29)
where € amd m would now mainly depend on the stability
of the atmosphere. Equations similar to eq (28) have been
proposed in the past. Frost (1946) from mixing length
considerations reasoned that C=1/m, or C=7 under neutral
conditions. Calder (1949, p. 165) calculated values of C
lying between 4 and 7 and values of m lying between
1/4.5 and 1/8 for diffusion from a line source. At any rate,
these different values only confirm that the present
numerically obtained result (eq 28) should provide a
reasonable basis for practical evaporation calculations.

1.00

)}

(E-rEq)/{pqu, la,-q

0.01 1 1 1 |
1672 10° 10 2 104 0% 108
2x, [em)

Ficure 5.—Reduced evaporation rate versus size of the evapor-
ating surface as obtained by numerical solution of eq (1%)
neglecting forward diffusion for the logarithmic law (solid line)
and by analytical solution (eq 25) for the power law (dotted
line).
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F1cure 6.—Variation of the reduced evaporation rate with a, and
with 2, as obtained by means of analytical solution (eq 25) for
the power law and by means of the numerical solution neglecting
forward diffusion for the logarithmic law, respectively, for m=1/7
and 2z,=104

aofem ~ ]/7'

2o [cm)

Figure 7.—Relationship between, a and z, obtained from figure 6.

TaBLE 6.—Variation of evaporation with ae determined from the analytical soluiions (eq 25); these data are also obtainable from numerical solution
of eq (1¥) neglecting = diffusion.

o 4 5 6

8 9 10 1 12 13

(E=1E ) (pathe(qu—ga0} 0. 1106 0. 0930 0.0807

0.0716

0. 0646 0.0589 0. 0543 0. 0504 0.0471 0. 0442

TaBLE 7.—Variation of evaporation with zy determined from the numerical solutions of eq (I*) neglecting x diffusion

2 0. 001 0. 002 0. 004

0.01

0.02 0.04 0.1 0.2 0.4 1.0

(E=rE)Hpatia(gu—qa)) 0.0402 0.0435 0. 0470

0. 0520

0. 0562 0. 0606 0. 0671 0.0725 0. 0866

0.0783
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5. CONCLUSIONS

The two successive transformations of the independent
variables of eq (12) or (27) and (13) provide a convenient
way of avoiding the numerical difficulties inherent in the
two-dimensional type of evaporation or cooling boundary
conditions of the present problem. Comparison with the
exact solution for a simple case shows that the error in the
proposed method is probably smaller than 1 percent.

The numerical experiments with this scheme show that
longitudinal diffusion is negligible as compared to wind
advection if the evaporating surface is larger than, say,
10 cm. They also show that the power law can be as
useful as the logarithmic law under near-neutral conditions
provided a, is chosen according to figure 7 or eq (28).

Further investigations are required on the validity of
the power law under diabatic conditions. Nevertheless, it
is expected that the power law will give good results in
the prediction of evaporation if the power index m and
the coeflicient @, are chosen such that it matches the
experimental wind profile or other more sophisticated
laws describing the wind profile.
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